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Abstract 

 Proton therapy is a highly precise form of radiation treatment that is 

particularly advantageous in pediatric oncology because it minimizes damage to 

surrounding healthy tissue. A critical factor in proton therapy treatment planning 

is accurate estimation of the stopping power ratio (SPR), which determines proton 

range and dose deposition. Dual-energy computed tomography (DECT) is widely 

employed to derive electron density and effective atomic number for SPR 

estimation. However, existing calibration models often introduce uncertainties that 

can adversely affect dose planning. 

 This thesis presents the first streamlined application designed to consolidate 

DECT analysis into a single tool that enables clinicians to calculate SPR accurately 

in one place. The application leverages three distinct calibration methods – Saito, 

Hünemohr, and Tanaka – to refine and improve the accuracy of SPR estimations. In 

addition, a convolutional autoencoder network (CAN) is integrated into the 

workflow to effectively reduce noise and eliminate artifact interference that is 

typically associated with DECT imaging. This dual-pronged approach not only 

enhances calibration precision but also mitigates systematic errors, ultimately 

contributing to improved treatment planning in proton therapy. 

 Through the combination of established calibration techniques and advanced 

machine learning, this research provides a comprehensive computational tool that 

streamlines DECT data processing and SPR estimation while also addressing the 

challenges of noise and artifact management.  
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1. Introduction 

Proton therapy has emerged as a highly precise form of radiation treatment, 

particularly beneficial for pediatric oncology due to its ability to prevent common 

side effects that were present in previously used radiation therapy [17]. Accurate 

calculations of proton stopping power is essential in ensuring that the proton beam 

deposits the majority of its energy at the tumor site, minimizing damage to healthy 

tissue. In the 1970s, dual-energy computed tomography (DECT) began to be 

explored for clinical treatment of cancer. DECT utilizes two different X-ray spectra 

to differentiate between different tissue types, allowing for a more accurate 

identification of tumors [7]. DECT provides a key advantage over the traditional 

single-energy CT method (SECT) by allowing for the use of computer algorithms 

that use the two different energy data to evaluate tissue attenuation, allowing for 

more accurate and powerful tissue characterization [7]. 

The primary objective of this thesis is to provide a streamlined tool to analyze 

DECT images for the calculation of proton stopping power in pediatric patients. We 

propose a tool, SPR-Net, that uses uploaded files outputted by the scanner, DICOM 

files, to calculate electron density ( ), effective atomic number ( ), and stopping ρ
𝑒

𝑍
𝑒𝑓𝑓

power ratio to water (SPR) using the equations outlined in Saito [22, 23], 

Hunehmohr [8], and Tanaka [27].  Then, we utilize curve fitting to optimize function 

parameters for the selected patient study to calculate , , and SPR. All ρ
𝑒

𝑍
𝑒𝑓𝑓

uploaded scans are processed through the convolutional autoencoder network (CAN) 

to clean potential noise or artifact obstruction that could influence calculations.  
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The thesis will explore essential background information regarding proton 

therapy, DECT, machine learning – including  Convolutional Neural Networks 

(CNNs) – and challenges being faced in the estimation of SPR for pediatric dose 

planning. A review of existing methods of calculation is presented. We then provide 

a detailed walkthrough of the tool’s development, including programming 

languages, frameworks, and libraries used. The architecture of the CAN will also be 

explained. Finally, we will expand on the implications of such a tool in clinical 

practice as well as future work following this tool’s development. 

2. Background 

2.1 Proton Therapy 

Proton therapy is an advanced form of radiation therapy that utilizes protons 

to deliver precise doses of radiation to tumors while minimizing damage to 

surrounding healthy tissues. After originally being proposed by Robert Wilson in 

1946, the first attempts of proton therapy were conducted by Lawerence et al.  in 

the mid 1950s on the cyclotron at the California Lawrence Berkeley Laboratory 

[29]. Since then, proton therapy has become more popular in diagnostics with 

various clinical applications. 

Clinical uses of proton therapy have been explored through various trials. 

The National Institute of Health (NIH) sponsored clinical trials focusing on cancers 

of the head, prostate, lung, gastrointestinal tract, and, particular to this study, 

pediatric [17]. About 10,000 children are diagnosed with cancer each year in the 

United States [17]. This provides great motivation to optimize proton therapy to 
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most effectively treat cancers while minimizing offset of the beam to healthy tissue 

in these smaller patients. 

Proton therapy utilizes protons, which are large particles with a positive 

charge, that deposit their energy at the end of the beam. While other radiological 

techniques gradually deposit energy along their path, protons deposit minimal 

energy until reaching an optimal depth, known as the Bragg Peak, where they 

release the majority of their energy before sharply dropping off. The success and 

wide availability of this method provides an advantage over traditional radiology 

since the maximum amount of energy can be deposited through careful positioning 

of the beam in each direction [22]. Various implementations of proton beam therapy 

are utilized in practice. Specifically, DECT has been seen to contribute to more 

accurate proton range predictions in dose planning. 

Particularly in younger patients, proton therapy poses risk of secondary 

radiation-induced tumors [5]. Reducing this risk is driving further research for 

advancements in proton therapy. As a result, proton therapy is often used as a 

means of reducing side effects in patients, especially in younger patients where 

there is a higher risk of mortality, thus requiring significantly lower dosages than in 

usual circumstances. Compared to traditional radiotherapy, a key advantage of 

proton therapy is its means of reducing total energy deposited outside of the tumor 

into healthy tissue in the patient [22]. However, there are many uncertainties that 

present themselves when dose planning for patients. These are due to a number of 

factors, including patient setup, patient geometry, and machine calibration [22]. 
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Biological considerations may also contribute to uncertainties in the planned dose 

range.  

Statistical analysis can evaluate the effect of range uncertainties on dose 

planning for proton therapy. The standard deviation of the Dose Volume Histogram 

(DVH) can be used to quantify dose variability within a tumor or organ, which may 

help to reflect the impact of uncertainties in dose delivery when the DVH deviates 

from its expected distribution [23]. DVHs show the relationship between radiation 

dose and the volume of tissues receiving at least that dosage, which help evaluate 

tumor coverage and the risk to healthy organs. An example DVH is provided in 

Figure 1. The x-axis explains the radiation dose and the y-axis displays the volume 

of tissue receiving at least that dose. Thresholds for organs at risk (OARs) are 

typically set by institutional protocol and physician judgement, which can vary 

between patients. When determining the tradeoff between tumor control and 

spillage risk, there are several factors that pose challenges. For instance, if the 

tumor is adjacent to an OAR, the chances of spillover will become much higher. The 

shape and size of a tumor may require more beam angles that could result in 

further opportunities for spillage to surrounding tissues. Additionally, if the patient 

loses weight or the tumor shrinks, the dose distributions may change and result in 

the need for further analysis. While analyses can be done to evaluate the potential 

harm of uncertain dose calculations, in the case of pediatric patients where they are 

more susceptible to side effects from proton therapy, accurate dose calculations are 

preferred to ensure proper treatment for the patient. 
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2.2 Dual-Energy Computed Tomography 

DECT is an imaging modality commonly used to identify and diagnose 

tumors and cancerous growth in the bodies prior to treatment dose planning. DECT 

utilizes two different X-ray energy ranges, measured in kilovoltage peak (kVp), with 

an optimal difference between the energy pair to enhance tissue contrast [27]. The 

energy separation should be sufficient to differentiate materials, but not so extreme 

that it compromises image quality or increases noise. 

There are two main interactions between the X-ray beams and the materials 

being scanned: The Compton effect, which depends on the electron density of the 

material, and the photoelectric effect, which depends on the effective atomic number 

[22]. The photoelectric effect in particular is exploited to differentiate the materials 

being scanned, as calcium and iodine are susceptible to it. 

The linear attenuation coefficient ( ) describes how much of the intensity of µ

X-ray photons is reduced as they pass through a material. This coefficient is 

material specific and energy-dependent. To quantify tissue response for CT imaging, 

 is converted to a CT number or Hounsfield Unit ( ), which is a normalized µ 𝐻𝑈

measure representing the X-ray attenuation of a tissue relative to that of water. The 

HU is calculated as follows:  

, 𝐶𝑇 = 1000 ·
µ

𝑚
−µ

𝑤

µ
𝑤

where  and  are the linear attenuation coefficients of the material and water µ
𝑚

µ
𝑤

respectively [6].  
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Low-kVp beams result in higher image contrast but increased noise, whereas 

high-kVp beams penetrate more deeply and reduce image noise, but may 

compromise contrast. DECT takes advantage of this tradeoff by combining low and 

high-kVp scans to maximize both contrast resolution and noise reduction. This 

dual-spectrum approach provides superior material discrimination compared to 

Single-Energy CT, which uses only one energy setting.  

To support accurate material property estimations, we computed the 

low-energy ( ) and high-energy ( ) Hounsfield Units for each material insert 𝐻𝑈
𝐿

𝐻𝑈
𝐻

across all available slice thicknesses. This was achieved by iterating through 

DICOM series grouped by kilovoltage peak and slice thickness. For each given slice 

in a given DICOM series, circular regions of interest (ROIs) were defined using 

known insert locations from phantom metadata. Within each ROI, we computed the 

average pixel intensity value by collecting all pixels within the specified circular 

boundary. These average pixels were then aggregated across all slices of a given 

scan to obtain a representative mean for that insert. 

To distinguish between low and high energy scans, the kVp metadata in the 

DICOM headers was used to classify each scan as either low (  kVp) or high (< 100

 kVp). For each insert, the average  and  were calculated by taking ≥ 100 𝐻𝑈
𝐿

𝐻𝑈
𝐻

the mean pixel values from the corresponding low and high energy scan groups. 

Figure 2 provides an example of the resulting  and  values for each material 𝐻𝑈
𝐿

𝐻𝑈
𝐻

from a scan series with 2.0 mm slice thickness used in our study. 
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Photon starvation, which is when an insufficient amount of photons reach the 

tissue from the beam, can result in an increase of noise. Patients with atypical 

geometry, such as those with larger BMI or children, may pose a need for further 

noise optimization to improve image quality [1]. Artifacts due to beam hardening 

are more likely to be present in calcium-rich materials and can interfere with SPR 

estimation [1]. Pre or post-processing of the reconstructed images may be paired 

with motion compensation algorithms to reduce artifacts in the image [2].  

Noisy scans have many adverse effects on SPR estimation. In the presence of 

gaussian noise, the distribution of SPR becomes asymmetrical – which contradicts 

the linear relationships between -  [15]. Noise is especially concerning to our 𝐶𝑇 ρ
𝑒

study as it has been observed to produce the largest mean shift in soft tissue 

estimations for the Hünemohr and Saito methods that we will be using [15]. 

Therefore, the reduction of noise will be emphasized throughout development of the 

tool. 

2.3 Existing SPR Calibration Models 

2.3.1 Saito Model 

 Masatoshi Saito [25] proposed a simple conversion from the 

energy-subtracted CT ( ) number to the relative electron density ( ) through a ∆𝐻𝑈 ρ
𝑒

singular linear relationship. The -  conversion has since been the foundation of ∆𝐻𝑈 ρ
𝑒

many additional DECT analyses. First, the energy-subtracted CT number, , is ∆𝐻𝑈

defined as a weighted combination of high and low-kVp CT numbers:  
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, Δ𝐻𝑈 = (1 + α)𝐻𝑈
𝐻

− α𝐻𝑈
𝐿

where  and  are the high and low  numbers and  is the weighing factor.  𝐻𝑈
𝐻

𝐻𝑈
𝐿

𝐶𝑇 α

To determine the optimal value for , a range of possible values from 0 to 1 α

are defined. The following steps are repeated for each potential value. First,  is ∆𝐻𝑈

calculated using the previous equation with the current candidate for . A linear α

model relating  and the true known electron densities, , of the phantom ∆𝐻𝑈 ρ
𝑒
𝑡𝑟𝑢𝑒

materials, which is modeled as: 

, ρ
𝑒
𝑐𝑎𝑙 = 𝑎 ∆𝐻𝑈

1000 + 𝑏

where  and  are fitting parameters obtained from linear regression. For each 𝑎 𝑏

candidate of , the coefficient of determination  is computed to assess how well the α 𝑟2

model fits the known  values. The value of  that yields the highest  is ρ
𝑒
𝑡𝑟𝑢𝑒 α 𝑟2

selected as the optimal weighting factor for the scanner. In the ideal case, , 𝑎 = 1

, and , indicating a perfect linear match between predicted and true 𝑏 = 0 𝑟2 = 1

electron density.  

 The -  conversion was used to perform DECT image simulations that ∆𝐻𝑈 ρ
𝑒

mimicked a second-generation dual-source CT scanner. A calibration curve was 

obtained for a study containing 16 inserts. The simulated line provided a 

predictable linear relationship over the ranges of  in the study, as displayed in ρ
𝑒

Table 1. Between the ideal and simulated values, the maximum difference was 

-0.7%. The resultant curve’s , , and  values were , , and  𝑟2 𝑎 𝑏 0. 99997 0. 999 1. 001
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respectively, which is close to unity and was expected for the ideal case. Due to its 

demonstrated accuracy in estimating electron density with minimal deviation from 

ideal values, the method proposed by Saito [25] is used in this study as a reliable 

calibration model. 

 Saito and Sagara [26] sought to expand on the -  conversion to derive ∆𝐻𝑈 ρ
𝑒

effective atomic numbers via electron density. This method, dubbed DEEDZ, 

utilized the equations presented in [25] to propose a reduced CT number, : 𝑢
𝑘

, 𝑢
𝑘

=
𝐻𝑈

𝑘

1000 + 1

where k = L or H depending on the energy spectra used. According to its definition, 

 may also be written as a linear attenuation coefficient relative to water: 𝑢
𝑘

, 𝑢
𝑘

=
µ(𝐸

𝑘
)

µ
𝑤

(𝐸
𝑘
)

which may be expanded to based on the definition of linear attenuation: 

 = ρ
𝑒

𝑃(𝐸
𝑘
) + 𝑄(𝐸

𝑘
)(

𝑍
𝑒𝑓𝑓

𝑍
𝑒𝑓𝑓,𝑤

)𝑚⎰
⎱

⎱
⎰,

where  and  are the functions for the Compton Scattering and 𝑃(𝐸
𝑘
) 𝑄(𝐸

𝑘
)

photoelectric absorption, respectively,  is the photon energy,  is the effective 𝐸 𝑍
𝑒𝑓𝑓,𝑤

atomic number of water, and  is quoted in the literature to be between 3 and 4. 𝑚

Considering the special case of water where  and , the 𝑢
𝑘

= ρ
𝑒

= 1 𝑍
𝑒𝑓𝑓

= 𝑍
𝑒𝑓𝑓,𝑤

constraint  is formed, allowing us to assert: 𝑃(𝐸
𝑘
) +  𝑄(𝐸

𝑘
) = 1

, (
𝑍

𝑒𝑓𝑓

𝑍
𝑒𝑓𝑓, 𝑤

)𝑚 − 1 = λ
𝑘
(

𝑢
𝑘

ρ
𝑒

− 1)
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where  and is a material-independent proportionality constant. Now, the λ
𝑘

= 1
𝑄(𝐸

𝑘
)

reduced form of this relationship requires only two fitting parameters,  and , to 𝑚 λ
𝑘

be determined. For the sake of our study, we assume  and use this to 𝑚 = 3. 3

calculate , which is the linear relationship  and . λ
𝑘

(𝑍
𝑒𝑓𝑓,𝑡𝑟𝑢𝑒

/𝑍
𝑒𝑓𝑓,𝑤

)𝑚 − 1 µ
𝐿
/ρ

𝑒,𝑐𝑎𝑙
− 1

Similar to , we take the value that provides the largest . α 𝑟2

 The DEEDZ method was then used for analysis against tissue surrogates 

with similar chemical compositions and mass densities as commercially available 

tissue substitution phantoms. The determined  and  were then applied to ρ
𝑒

𝑍
𝑒𝑓𝑓

human equivalent tissues. The resulting  from the simulations as seen in Table 𝑍
𝑒𝑓𝑓

2 were found to be within ±0.3% relative deviations, excluding the thyroid with a 

larger deviation of -3.1% due to the appearance of iodine in its concentration which 

poses a large atomic number ( ). Thus, the DEEDZ method expands on the 𝑍 = 53

previous - conversion to produce highly accurate  formulations to be used ∆𝐻𝑈 ρ
𝑒

𝑍
𝑒𝑓𝑓

in SPR calculations and will be used alongside the - conversion in this study. ∆𝐻𝑈 ρ
𝑒

2.3.2 Hünemohr Model 

 Hünemohr et al [9] proposed a method that utilizes DECT imaging 

techniques to predict SPR with respect to  and  across a study consisting ρ
𝑒
/ρ

𝑒,𝑤
𝑍

𝑒𝑓𝑓

of twenty materials including tissue surrogates and artificial components. SPR was 

calculated by a simplified version of the Bethe equation: 
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, 𝑆𝑃𝑅
𝑤

=
ρ

𝑒

ρ
𝑒,𝑤

·
12.77−(𝑎· 𝑍

𝑒𝑓𝑓
+𝑏)

8.45

where  and  are fitting parameters. The electron density ratios, , were 𝑎 𝑏 ρ
𝑒
/ρ

𝑒,𝑤

modeled as: 

, 
ρ

𝑒

ρ
𝑒,𝑤

= 𝑐
𝑒

· (
𝑥

1

1000 + 1) + (1 − 𝑐
𝑒
) · (

𝑥
2

1000 + 1)

where  is a fitting parameter and and  are the CT numbers for the study. Note 𝑐
𝑒

𝑥
1

𝑥
2

that CT numbers and  are used interchangeably. This formulation uses the 𝐻𝑈

reduced CT number, , proposed by [25]. The true effective atomic number, , for 𝑢
𝑘

𝑍
𝑒𝑓𝑓

a given material was evaluated as: 

, 𝑍
𝑒𝑓𝑓

= (
Σ

𝑖
𝑛

𝑖
𝑍

𝑖
𝑛+1

Σ
𝑖
𝑛

𝑖
𝑍

𝑖
)

1
𝑛

where  is the number of atoms per unit volume of type  and  is the atomic 𝑛
𝑖

𝑖 𝑍
𝑖

number of an element in a material’s composition. The coefficient  is a CT-specific 𝑛

parameter. This true value is then used to determine the fitting parameter  to 𝑑
𝑒

calculate the estimated  of a given material: 𝑍
𝑒𝑓𝑓

, 𝑍
𝑒𝑓𝑓

= ((
ρ

𝑒

ρ
𝑒,𝑤

)−1(𝑑
𝑒
(

𝑥
1

1000𝐻𝑈 + 1) + (𝑍2
𝑒𝑓𝑓,𝑤

− 𝑑
𝑒
)(

𝑥
2

1000𝐻𝑈 + 1)))
1
𝑛

where  is the same parameter as the previous equation. 𝑛

 Findings for  and  in the experimental analysis yielded a 0.4% and ρ
𝑒
/ρ

𝑒,𝑤
𝑍

𝑒𝑓𝑓

1,7% mean accuracy for the tissue surrogates, respectively. SPR was calculated 

using the simplified Bethe equation and the calculated parameters using the 

proposed methodology with a yield of 0.6% mean accuracy for the experimental 
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values. The accuracy presented in this method demonstrates its strong predictive 

capabilities, thus making it a well suited option to use in this study.  

2.3.3 Tanaka Model 

Tanaka et al [30] compiled the works of Saito, Sagara and Hünemohr into a 

dose calculation plan that utilizes both papers in order to achieve an accurate SPR. 

Using the theoretical basis of the Bethe equation, SPR is approximated as: 

, 𝑆𝑃𝑅 = ρ
𝑒
[1 −

𝑙𝑛 𝐼
𝐼

𝑤

𝑙𝑛[
2𝑚

𝑒
𝑐2β2

𝐼
𝑤

(1−β2)
}−β2

]

where  and  are the mean excitation energies of the material and water,  is the 𝐼 𝐼
𝑤

𝑚
𝑒

rest electron mass,  is the speed of light in a vacuum, and  is the speed of the 𝑐 β

projectile proton relative to light. The formulations for  proposed in [22] were used ρ
𝑒

along with the formula for the ratio of effective atomic numbers. Instead of the 

reduced CT number proposed by Saito [25], Tanaka [30] utilized a more general 

form from Han et al [8]: 

, 𝑢
𝐿

= 𝑎
𝐿

𝐻𝑈
𝐿

1000 + 𝑏
𝐿

where and  are also fitting parameters. To calculate , an additional 𝑎
𝐿
 𝑏

𝐿
𝑙𝑛 𝐼

𝐼
𝑤

function proposed by Saito and Sagara [26] was used: 

, 𝑙𝑛 𝐼
𝐼

𝑤
= 𝑐

1
{(

𝑍
𝑒𝑓𝑓

𝑍
𝑒𝑓𝑓,𝑤

)𝑚 − 1} − 𝑐
0

where  and  are human-tissue specific constants for the slope of intercept from 𝑐
0

𝑐
1

the calibration line of the effective atomic number ratio. 
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 The process proposed by Tanaka et al [30] reduces the need for the task of 

optimizing the calibration parameters for varying patient geometry and body size as 

the absolute difference in SPR between the high and low energy scans, , for ∆𝑆𝑃𝑅

tissue regions was only 0.3% of the reference value when using the DEEDZ 

conversion compared to the conventional stoichiometric SECT-SPR conversion as 

seen in Table 3. Due to its minimal reaction to variations in  for the  λ
𝐿

𝑍
𝑒𝑓𝑓

calibration presented in [26], this method provides the advantage of not needing to 

be calibrated for every patient with a different body size in order to minimize the 

dose-calculation errors. Therefore, this method was utilized in our study due to its 

lack of limitations with smaller pediatric patients.  

2.4 Machine Learning in Medical Imaging 

2.4.1 Overview of Machine Learning in Radiology 

Machine learning encompasses the study of algorithms which can learn 

relationships or patterns from data and make decisions based on them [18]. Due to 

the versatility in its applications, machine learning has a wide range of use in 

radiology. Machine learning is utilized across medical image segmentation, image 

registration, and content-based image retrieval – to name a few use cases [32]. 

Machine learning has also been used to automate the estimation of radiation doses 

from CT scans. Deep CNN classifiers trained on CT data sets have shown an 

accuracy upwards of 96% when estimating organ specific radiation dose estimations 

[4].  

 



17 

There are various barriers that stand between the widespread use of machine 

learning models in clinical practice. Supervised machine learning models require 

large datasets with annotated labels, which can be costly and time consuming for 

radiology professionals to produce [4]. There is also the assumption of blame, where 

physicians who rely on machine learning powered tools must take ownership of the 

results produced by the model [4]. Ethical and regulatory measures are necessary to 

ensure anything outputted by a machine learning system is being cross validated 

and approved by medical professionals before they are used to influence patient 

care. 

2.4.2 Convolutional Neural Networks (CNNs) 

Implementations of machine learning span across various fields, including 

neural networks. A neural network mimics the human brain, where the network 

identifies patterns in the data by adapting to changes in the input to generate the 

best possible result [18]. Neural networks are made up of a system of nodes called 

neurons, which are activated when the expected data has arrived [32].  

Convolutional neural networks are a class of deep neural networks primarily 

used for image processing. They are composed of three foundational building blocks, 

dubbed convolution, pooling, and fully connected layers. The former extracts 

features from the image while the latter applies the extracted features to a final 

output [33]. A key benefit to CNNs is their ability to reduce the number of 

parameters by removing trivial features without having to extract them manually 
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[16]. CNNs provide a wide range of use cases including but not limited to: image 

classification, object detection, and image segmentation [16].  

Due to their layered structure, CNNs are able to extract more meaningful 

high level features, which makes them well suited for tasks involving complex data 

structures. Due to their scalability, CNNs are a critical component in modern 

imaging workflows. 

2.4.3 CNNs for Denoising 

Medical images obtained by CT machines are subject to various degrees of 

noise that may be obtained during transmission and acquisition, which can 

complicate the analysis of DECT images, subsequently prolonging a diagnosis [11]. 

The most common sources of noise in CT are quantum noise and electronic noise 

and are increased by material separation [22]. Quantum noise refers to the natural 

statistical fluctuations present in X-ray signals due to its random nature. It is not 

reproducible or repeatable, making it challenging to mitigate when training a 

denoising model [31]. 

Classic auto encoder and decoder models fall short when working with more 

robust datasets. There have been various models designed for the purpose of 

denoising medical images. Residual learning, proposed by Jifara et al [11] provides 

a deep network that is ideal for small training data sets wherein it may learn the 

noise residual from the noisy image itself.  This model, however, does not perform 

well against noise from image compression. Chen et al [3] propose a model that 
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utilizes learning-based noise reduction and patch encoding to circumnavigate the 

need for noise-specific methods to filter and restore clean images.  

Beyond the architecture of the model, choosing an appropriate loss function 

can also have a staggering impact on its performance. Loss functions compare the 

output of the neural network with the ground truth values, wherein the model will 

then output a result that has a minimized loss [34]. Loss functions for image 

denoising tasks can be separated into pixel-level loss, perceptual loss, and 

adversarial loss [14]. Pixel-level loss measures the pixel-wise error between a 

denoised image and the clean image and is often calculated through mean absolute 

error (MAE) and mean square error (MSE). Perceptual loss is obtained from 

pixel-level loss and is used for feature maps. Adversarial loss is a measure of 

distance between distributions of a denoised image and clean image. When 

assuming the goals of a denoiser are to reduce noise while not introducing blur to 

the image, MAE and MSE proved to be the most optimal choices [14]. 

3. Methodology 

3.1 Overview of SPR-Net 

3.1.1 Objectives and Functional Requirements 

The primary objective of SPR-Net is to streamline the analysis of DECT 

datasets for the purpose of estimating SPRs in pediatric cancer therapy planning. 

The tool was designed to assist researchers and clinicians by providing an 

end-to-end workflow: from DICOM input handling and image preprocessing to 

insert detection,  extraction, and model-based SPR calculations. By integrating 𝐻𝑈
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multiple DECT-based models and offering an easy-to-use interface, the tool supports 

comparative evaluation and calibration of predicted values against known material 

properties, ultimately enhancing the reliability and efficiency of DECT data 

analysis. 

Functionally, this tool is required to accept raw DICOM folders containing 

both a high and low kVp image series, regardless of file naming. It classifies and 

separates the series using metadata present in the DICOM files and prepares them 

for analysis through basic preprocessing including rescaling, normalization, and 

spatial alignment. The tool automatically detects the positions of known insert 

configurations for both head and body sized phantoms and extracts region-specific 

 values for both energy levels. Users are given the ability to adjust the insert 𝐻𝑈

boundary radius to assess how changes in region size affect  measurements and 𝐻𝑈

model outputs. Users also have the ability to denoise their images using a trained 

CNN to clean any noise or artifacts that may be present on the images before 

proceeding with analysis. 

The tool incorporates three SPR estimation models from existing literature, 

as described in Section 2.3. These models are calibrated against the truth tables 

present in their respective literature, which contain validated physical properties 

for each phantom insert material. Model outputs are then compared against these 

true values to evaluate prediction accuracy. Finally, the tool includes a React-based 

graphical user interface that allows users to upload data, visualize DECT images, 

inspect insert overlays, select SPR models, and view output results in real time. 
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Results include identified materials, model based  and  predictions, and error ρ
𝑒

𝑍
𝑒𝑓𝑓

metrics relative to the ground truth.  

3.1.2 Workflow and User Interaction 

 The tool was developed with a user-centered design approach. Upon 

launching the application, users are prompted to upload a folder containing DICOM 

series. These series must include a folder for the high kVp and the low kVp due to 

the nature of the imaging modality. The backend will parse the DICOM metadata to 

classify each series and pair them accordingly. 

 Once the data is processed, the user is presented with a preview of the 

images taken by the machine. From this view, they can iterate through them and 

select their image pairing. Users may also elect to utilize the denoising feature to 

clean any noise on their selected images before continuing, 

 The tool automatically detects and overlays insert locations onto the images. 

A slider allows the user to adjust the radius around each insert to fine-tune the 

region of interest in  calculations. The user must also input information about 𝐻𝑈

the scan parameters, such as high and low kVp levels and slice thickness. The user 

will then select one of the models to use with their data. 

A reference table is then generated that contains the list of identified 

materials from the scans, model outputs for ,  and SPR. To evaluate the ρ
𝑒

𝑍
𝑒𝑓𝑓

accuracy of  and , two statistical metrics were reported: the Root Mean Square ρ
𝑒

𝑍
𝑒𝑓𝑓

Error ( ) and the coefficient of determination ( ).  measures the average 𝑅𝑀𝑆𝐸 𝑅2 𝑅𝑀𝑆𝐸
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magnitude of the errors between predicted and true values, where lower values 

signify better performance.  indicates the proportion of variance in the true values 𝑅2

that is predictable from the model outputs, where a score closer to 1 suggests a 

stronger correlation and reliable predictions. The user also has the option of 

comparing the results of the study with another study of  their choice by either 

selecting a new model to benchmark against or by adjusting the current selection 

through the radius size or denoising feature. The full stage of user interactions are 

summarized in the workflow diagram shown in Figure 3. This diagram outlines the 

sequence from DICOM input to model output. 

3.2 CAN-Based Noise Reduction 

3.2.1 Architecture of the CAN Model 

To effectively reduce noise in DECT images while preserving the structural 

details of phantom substitutes, we implemented a convolutional autoencoder neural 

network. The autoencoder architecture consists of two primary components: an 

encoder that compresses the input image into a lower-dimensional representation 

(latent space), and a decoder that reconstructs the image from this compact 

encoding. This process allows the model to learn the most salient features of the 

input data while disregarding irrelevant noise.  

Figure 2 shows the overall workflow of our denoising pipeline. The original 

clean DECT image (128x128 pixels) is synthetically degraded by adding Gaussian 

noise, simulating a low-dose acquisition: 

, 𝑥 = 𝑥 + η
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where  is the clean input image,  is the noisy input, and  represents the added 𝑥 𝑥 η

noise from a Gaussian distribution. Although Gaussian noise is not the 

predominant form of noise found in DECT imaging, at higher photon flux 

conditions, quantum noise converges towards a Gaussian distribution, making 

Gaussian noise a reasonable benchmark for this denoising experiment [12]. The 

noisy image is then passed through the encoder, which progressively compresses the 

input through the encoder network , which maps it to a latent representation : 𝑓
θ

𝑧

. 𝑧 = 𝑓
θ
(𝑥)

The latent representation of the input data is essential to understanding 

relationships of the features that are observable in the input data. Reducing the 

dimensionality of the input data while maintaining its essential features makes for 

easier handling and processing of complex input data. This representation is then 

passed into the decoder. 

After reaching the bottleneck layer and obtaining the latent representation, 

the decoder  reconstructs the denoised image  from the latent space: 𝑔
ϕ

𝑥

, 𝑥 = 𝑔
ϕ

(𝑧) = 𝑔
ϕ

(𝑓
θ
(𝑥))

where  is constructed by minimizing the reconstruction error of the latent data. 𝑥

The detailed architecture of the CAN is shown in Figure 3. The encoder 

comprises three layers with decreasing dimensionality: 700, 500, and 300 neurons, 

respectively. These layers extract increasingly abstract features while reducing 

spatial resolution. The bottleneck is the center of our network and consists of 100 
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neurons that serve as the compressed latent representation of the input image. The 

decoder mirrors the encoder architecture, with three symmetric layers in increasing 

dimensionality, reconstructing the denoised output image from the bottleneck 

features.  

Each layer uses ReLU (Rectified Linear Unit) activation to introduce 

non-linearity. ReLU is defined as , which means it outputs 0 for all 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

negative inputs and passes positive values unchanged. This activation function is 

widely used in convolutional neural networks due to its simplicity and 

computational efficiency, allowing the network to learn sparse and efficient 

representations. These properties are particularly beneficial in denoising 

applications, where the model must emphasize important features while 

suppressing irrelevant noise. 

The output layer, however, uses a sigmoid activation function, defined as 

. This function maps input values to a range between 0 and 1, making σ(𝑥) = 1

1+𝑒−𝑥

it suitable for constraining pixel intensity values in normalized grayscale images. In 

the context of image denoising, sigmoid ensures that the reconstructed pixel values 

remain within a realistic and interpretable range, which is crucial for visual 

accuracy and quantitative evaluation later. 

3.2.2 Training and Optimization 

The dataset consisted of 348 128x128 pixel grayscale DECT images of 

phantoms with clearly defined inserts. Clean images  were artificially corrupted 𝑥
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using Gaussian noise to generate corresponding noisy images . This synthetic 𝑥

augmentation allowed the model to learn an array of noise characteristics without 

the trial and error of manually taking scans that would result in a diverse set of 

noise. 

Each training pair  was normalized to have pixel intensities within the (𝑥, 𝑥)

range . The dataset was then split into 80% for training, 10% for validation, [0, 1]

and 10% for testing.  

The network was trained by minimizing the Mean Squared Error ( ) loss 𝑀𝑆𝐸

function: 

 𝑀𝑆𝐸 = 1
𝑛 ∑ 𝑖 = 1𝑛(𝑥

𝑖
− 𝑥

𝑖
)2

where  and  denote the ground truth and reconstructed pixel values, respectively, 𝑥
𝑖

𝑥
𝑖

and  is the total number of pixels per image. This encourages the model to produce 𝑛

denoised outputs that are as close as possible to the clean reference images in a 

pixel-wise sense. 

The model was trained using the Adam optimizer, a variant of stochastic 

gradient. This optimizer was chosen due to its dynamic learning rate, which allows 

each parameter to learn on past gradients and get past local minima more quickly, 

and that it uses fewer hyperparameters compared to standard SGD. Adam 

converges much faster compared to standard SGD and requires minimal tuning, 

which made it an effective option for this project. Training was conducted for 50 

epochs with a batch size of 16. Early stopping was employed by monitoring the 
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validation loss. Training would halt if the validation loss failed to improve after 10 

consecutive epochs, thereby reducing the risk of overfitting.    

4. Application Development.  

4.1 Software Architecture 

 The software architecture consists of a modular client-server architecture 

consisting of two components: a React frontend for user interaction and a FastAPI 

backend for data processing, computation and model execution . This ensures 

separation between user interface logic and computational functionality. 

 The React frontend manages file uploads, parameter selections, and real-time 

visualization of results. It communicates with the backend through HTTPs 

requests. The user interface is designed to be intuitive and responsive, allowing 

users to preview DICOM images, adjust insert boundaries, clean images, select 

analysis models, and view outputs including calculated , ,  and SPR. 𝐻𝑈 ρ
𝑒

𝑍
𝑒𝑓𝑓

interactive elements such as sliders are implemented to provide fine control over 

analysis parameters. Figures 4, 5, 6, 7, and 8 showcase the frontend in order of user 

flow. 

 The backend is responsible for the core computational tasks. Upon receiving 

a HTTP request from the frontend, it will access the associated API to perform the 

requested task. The order of operations begin with the backend parsing and 

organizing the DICOM files using the pydicom library and performing 

preprocessing such as image rescaling and alignment using NumPy and OpenCV. If 

the user chooses to clean the image of any noise, this will be done next before any 
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calculations occur. Insert detection is guided by predefined phantom layouts for 

different phantom sizes and insert specific  are calculated for both the high and 𝐻𝑈

low kVp scans. The backend then applies the selected SPR model and calculates the 

calibrated parameters. The calculated results, ground truth, identified materials, 

and error metrics results are then returned.  

 The application enables modular enhancements, specifically for the addition 

of further models for SPR calculation. The backend contains individual Python files 

that contain the code for each model. Any additional model from new literature 

must simply be translated to Python code and added to its own file that can be 

called upon the main FastAPI application within the backend. This allows for the 

tool to grow as research in DECT grows as well, ensuring long term support for 

clinicians, researchers, and patients. 

5. Evaluation and Validation 

5.1 Benchmarking Against Ground Truth Values 

 To measure the effectiveness of the SPR models, we compared the calculated 

values from our data with the values presented in the literature for each study. 

These served as our ground truth values and were used in all error metrics. For  ρ
𝑒

and , the values for both parameters were obtained from the literature for each 𝑍
𝑒𝑓𝑓

material used in our study.  

While these models are meant to be calibrated to work for any study setup, it 

is important to note differences in our experimental phantoms and those presented 

in the literature. Particularly for the Hünemohr model which calculates   based 𝑍
𝑒𝑓𝑓
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on the elemental composition of the phantom insert, there will be a slightly higher 

error than that for . This is due to the slight and subtle differences in elemental ρ
𝑒

composition between the phantom substitutes used in this study and that of 

Hünemohr. Thus, those using the application must familiarize themselves with the 

contents of their tissue substitutes and how they differ from those presented in the 

literature of the model they are utilizing. 

 5.2 Model Accuracy and Performance Metrics 

 5.2.1 Evaluation of SPR Calculation Methods 

 The three models presented in this application must have their respective 

hyperparameters fit to the data. Drawing mathematical relationships between , 𝐻𝑈

,  and SPR is complex – even if the physics behind these subjects are known ρ
𝑒

𝑍
𝑒𝑓𝑓

(e.g., the Bethe equation, photoelectric effect, Compton scattering). Analytically, this 

conversion is difficult due to various systemic factors.  values are influenced by 𝐻𝑈

both material composition and scanner-specific factors, which may differ from those 

used in the existing literature. Beam hardening, noise, and other real-world effects 

also influence the image. To compensate, these models are empirical and must be 

fitted to adapt the model to our setup. 

 Error metrics were calculated for  and  as they are direct model outputs ρ
𝑒

𝑍
𝑒𝑓𝑓

that are measurable and validated individually. SPR, however, is a derived value. 

Any error in  and  propagates through the Bethe formula nonlinearly, thus ρ
𝑒

𝑍
𝑒𝑓𝑓
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masking issues in the underlying model. For this reason, only the aforementioned 

parameters were used for error calculations. 

  and  were calculated.   measures the average magnitude of the 𝑅𝑀𝑆𝐸 𝑅2 𝑅𝑀𝑆𝐸

error between our predicted parameters and the ground truth values present in the 

literature. Because  and  are continuous and quantitative variables, it gives us ρ
𝑒

𝑍
𝑒𝑓𝑓

an absolute sense of error while penalizing larger errors more heavily. This is 

especially important in clinical settings where even small inaccuracies can impact 

SPR.  was calculated to explain how well the calibrated models are fitting for our 𝑅2

range of parameters. This is used to track how reliable and explanatory our model 

is across scans. 

 To evaluate the accuracy of our application and validate its underlying 

methodology, we conducted an experimental study using a DECT scan pair at 

80/120 kVp. The study included 8 tissue-equivalent materials with known physical 

properties. For each insert, the application calculated the relative , , and SPR. ρ
𝑒

𝑍
𝑒𝑓𝑓

The results of this analysis are displayed in Tables 5, 6, and 7, which summarizes 

the calculated values for each material along with the fitted model parameters and 

corresponding error metrics across the three models implemented in the 

application. 

 The purpose of this comparison was to determine which method yields the 

most accurate results within the phantom dataset. The Saito method (Table 6) 

yielded the strongest performance with the lowest  for  and the highest  𝑅𝑀𝑆𝐸 𝑍
𝑒𝑓𝑓

𝑅2

 



30 

for  as well. The Tanaka method (Table 5) yielded identical results for  – which 𝑍
𝑒𝑓𝑓

ρ
𝑒

makes sense considering it uses the same equations as presented in Saito [25] and 

[26]. Hünemohr presented the worst results, with a staggeringly low  of  𝑅2 0. 22917

and  for  and , respectively.  0. 68743 ρ
𝑒

𝑍
𝑒𝑓𝑓

 These results suggest that the Saito model provides the most balanced and 

reliable estimates of physical properties in this DECT study. The resulting accuracy 

in  and  directly enables reliable estimation of SPR, which is critical for dose ρ
𝑒

𝑍
𝑒𝑓𝑓

planning. 

 However, it is important to note that these findings are specific to the 

materials, scanning conditions, and experimental setup used in this study. Different 

scanners, kVp pairings, or tissue compositions may yield different outcomes, and 

other studies may find alternative models more appropriate. The goal of this tool is 

not to universally prescribe one method, but to allow researchers and clinicians to 

test multiple models on their own data and identify which approach provides the 

most accurate predictions for their specific use case. This flexibility is especially 

valuable when using DECT to inform SPR calculations for pediatric patient dose 

planning, where even small deviations could prove to be fatal. 

 5.2.2 CAN Performance in Noise Reduction 

The goal of the CAN denoiser was to reduce variations in  values across 𝐻𝑈

noisy images in our dataset. To measure this, we used three different error metrics: 
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PSNR, SSIM, and LPIPS. The results of these metrics are detailed in Table 4 and 

explained in more detail below. 

PSNR, or peak signal-to-noise ratio, is the measure of the maximum possible 

pixel value in an image (e.g., 255 in 8-bit images). This measures how close a 

denoised image is to the original image, pixel by pixel. However, this does not 

correlate well with perceived image quality. Changes in brightness, contrast, or 

other visual quality metrics can affect PSNR. PSNR is calculated as: 

, 𝑃𝑆𝑁𝑅 = 20 × 𝑙𝑜𝑔
10

(
𝑀𝐴𝑋

𝑖

𝑀𝑆𝐸
)

where  is the maximum possible pixel value. We obtained a PSNR of 35.62 dB, 𝑀𝐴𝑋
𝑖

which is well within the range of a good score for 8-bit images (30 dB to 50 dB).  

SSIM is a structural similarity index measure, which calculates the perceived 

quality of the image based on luminance, contrast, and structure. SSIM compares 

local patterns of pixel intensities that have been normalized for luminance and 

contrast. Scores range from -1 to 1, where 1 is perfect similarity. SSIM also accounts 

for structural information and is more aligned with human visual perception. Our 

SSIM score was 0.9058, which indicates that the noisy and clean images are very 

similar to each other. 

LPIPS is the learned perceptual image path similarity. Deep features 

extracted from images using pre-trained neural networks compute the distance 

between image feature maps at multiple layers to capture high-level perceptual 

differences. A lower score indicates that the images are similar. Compared to PSNR, 
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LPIPS can capture semantic differences that aren’t noticed by pixel wise metrics. 

Using AlexNet, we obtained a score of 0.0635.  

According to the presented metrics, our CAN is effective at reducing noise 

while maintaining pixel values to ensure that  values are preserved for our 𝐻𝑈

analyses purposes. 

6. Discussion and Future Work 

6.1 Comparison of Model Performance 

An important feature of SPR-Net is its ability to facilitate direct comparison 

between different DECT models for a given image pair. Beyond a single evaluation, 

SPR-Net allows users to test the same image pair against multiple models, 

providing a side-by-side comparison of predicted values. This comparative approach 

helps identify which model yields results that best align with the known ground 

truth under specific imaging conditions. 

To assess the reliability and flexibility of SPR-Net, we conducted a controlled 

validation study designed to evaluate how changes in model selection and 

processing parameters influence the calculated values of , , and SPR. The goal ρ
𝑒

𝑍
𝑒𝑓𝑓

of this validation was not only to verify output accuracy, but also demonstrate the 

extent to which different DECT models and user-defined parameters can affect 

material property estimation, an important consideration for dose planning in 

proton therapy. 

This experimental setup utilized a 70/140 kVp pair of eight known 

tissue-equivalent inserts taken at a slice thickness of 4.0 mm. We performed a 
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series of tests across multiple conditions, namely switching between the Tanaka, 

Saito, and Hünemohr models and adjusting the insert radius used for averaging. 

For each configuration, we recorded the resulting , , and SPR.  ρ
𝑒

𝑍
𝑒𝑓𝑓

Tables 8, 9, and 10 present the physical properties calculated using the 

Tanaka, Saito, and Hünemohr methods under three different radius settings: 100%, 

50%, and 25% of the original insert size. Each table presents side-by-side outputs 

from all three models for direct comparison. In general, Tanaka consistently 

produced the most clinically plausible SPR values, maintaining relative stability 

across all three radii. For example, for the inner bone, Tanaka predicted SPRs of 

1.28746 (100%), 1.28611 (50%), and 1.28868 (25%), suggesting strong resistance to 

ROI size fluctuations. This resistance is particularly important when identifying an 

appropriate model for pediatric patients, whose smaller body size and localized 

tumors often result in smaller ROIs. In such cases, the ability to derive a consistent 

and accurate SPR, regardless of insert or lesion size, is essential for ensuring proper 

proton range calculations and avoiding treatment inaccuracies due to scaling errors. 

The Saito model, while reasonably consistent across radii, tended to 

underpredict  and showed sensitivity to radius changes. The LN-350 SPR values 𝑍
𝑒𝑓𝑓

varied from 0.27250 (100%) to 0.31006 (50%) and 1.30882 (25%), indicating that 

reduced spatial averaging of the HU shifted predictions in low-density regions. This 

is not ideal for the case of pediatrics, where fluctuations due to body size should not 

be a concern when planning for patients. 
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In contrast, the Hünemohr model yielded consistently low SPR values across 

all material and radii, which may not reflect realistic stopping powers for human 

tissue. For cortical bone, a material that requires a high stopping power due to its 

density, the model predicted SPRS of 0.03368, 0.03514, and 0.03517 across the three 

radii, which were nearly two orders of magnitude lower than those from Tanaka or 

Saito. This consistent underestimation highlights a potential limitation of the 

model’s calibration for this dataset or kVp pairing. 

These results reinforce the importance of customizable comparison in 

SPR-Net. The ability to vary both model and preprocessing parameters within a 

single platform allows users to test multiple hypotheses, observe their effect on 

clinical metrics like SPR, and identify the best-fitting approach for their data. With 

full export of configuration and results, SPR-Net supports transparent, reproducible 

research that enables evidence-based model selection for both academic and clinical 

environments.  

6.2 Limitations of Current Implementation 

 Presently, this study utilizes tissue substitute phantoms in our analysis and 

application workflow instead of actual patient scans. There are several reasons for 

this decision. Phantoms contain tissue substitutes with known physical properties, 

which allows researchers to compare predicted results from model outputs to known 

values provided by the manufacturer. This way, we are able to evaluate model 

accuracy without the variability of human tissue like hydration, tissue composition, 

or movement. This makes testing reproducible and eliminates ethical concerns 
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surrounding prolonged radiation exposure, particularly for pediatric patients. 

Utilizing phantoms also introduces important limitations. Tissue substitutes cannot 

fully replicate the physiological complexity of real human tissues. Biological 

variability in organ shape, texture, disease presentation, and tumor composition is 

absent from phantom studies. The limited range of materials in phantom inserts 

may also fail to capture overlapping tissue properties seen in patients.  

 This study is also limited in the models it chooses to implement. Presently, 

we use three models. The Tanaka model especially combines the efforts of both Saito 

and Hünemohr into a single directed workflow. This introduces dependencies 

between the models where any inaccuracies present in one may propagate through 

the combined framework. As such, understanding the individual strengths and 

limitations of each model is essential to interpreting results.  

 Additionally, limitations exist in the current noise reduction strategy. The 

denoiser was trained on synthetic Gaussian noise added to clean phantom images. 

While this provides a controlled and reproducible training environment, it does not 

fully reflect the noise characteristics typical of clinical CT imaging, where quantum 

noise is more prevalent. The use of Gaussian noise was intended as an initial 

benchmark to assess the feasibility of automated denoising in the DECT workflow. 

However, before clinical use, it will be necessary to retrain or further tune the 

denoiser using more realistic noise models derived from scan simulations to capture 

the stochastic properties of quantum noise. Expanding the denoiser in this way will 
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ensure better preservation of anatomical structures and improve confidence in the 

clinical applicability of the generated outputs. 

6.3 Future Directions 

Moving forward, the project offers several key opportunities for expansion 

and refinement. One of the most immediate directions involves the implementations 

of additional DECT models for SPR estimation. While this study focused on three 

core models, incorporating alternative or emerging models could offer deeper 

insights into model performance across different imaging protocols and tissue types. 

Comparative analysis among a broader set of models would allow for more nuanced 

validation and the potential to develop approaches that combine model outputs to 

reduce uncertainty and improve overall prediction accuracy. 

Another critical future step is the integration of patient scan data into the 

analysis pipeline. While phantoms provide a reliable baseline for controlled testing, 

they cannot fully capture the anatomic complexity and biological variability present 

in clinical settings. Expanding this work to include patient datasets will allow for 

more rigorous testing of model generalizability and will be essential for clinical 

translations. 

Additionally, future efforts will focus on improving the software’s user 

interface and integrating it more seamlessly with research workflows, including 

automated preprocessing and batch processing for offline and asynchronous 

processing of big data. Future work will also focus on improving the performance of 

the CAN used in this application. Future improvements to the denoiser must be 
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done so on a training set that includes quantum noise to increase the clinical 

applicability of this tool. While the current CAN supports denoising of images 

through the simple autoencoder structure, further learning of contextual features 

may occur through the use of more involved architectures, like Unet or residual 

learning. These enhancements will make the model more robust and increase 

confidence in its use for accuracy improvements. 

6.4 Potential Clinical Impact 

Accurate estimation of SPR is essential for effective proton therapy, 

particularly in pediatric patients where minimizing radiation exposure to healthy 

tissue is critical. Our data-driven approach integrates machine learning with DECT 

analysis to improve the precision and reliability of stopping power estimates. By 

benchmarking model predictions against tissue-substitute phantoms with known 

properties, the framework ensures foundational accuracies before eventual clinical 

translation.  

The proposed workflow has the potential to streamline pre-treatment 

planning in proton therapy by reducing the uncertainties in dose calculations. For 

pediatric patients, where treatment margins must be minimized to avoid damage to 

developing organs and tissues, even small improvements in SPR can lead to more 

targeted radiation delivery and better long-term outcomes. Moreover, the 

integration of the CAN allows researchers to offset the noise typical of DECT 

scanning, improving confidence in treatment plans and reducing the need for 

additional imaging. 
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Looking ahead, this project represents a collaborative effort between the New 

York Proton Center (NYPC), where the developed application will be directly 

integrated into ongoing research within their imaging and treatment planning 

laboratories. By leveraging this tool, NYPC researchers aim to streamline DECT 

analysis and improve SPR estimation for pediatric patients. The ability to automate 

insert detection, material identification, and parameter calculation will support 

more efficient and reproducible experiments, while also reducing the manual 

workload on medical physicists and research staff. This project bridges the gap 

between research innovation and practical implementation in a clinical research 

environment. 

7. Conclusion 

This study presents a machine learning-assisted workflow for analyzing 

DECT images to improve SPR estimation. By utilizing tissue substitutes phantoms 

with known material properties, the analysis ensures a controlled and reproducible 

testing environment for evaluating the accuracy and reliability of various DECT 

models. The integration of these models has enabled the automatic calculation of  ρ
𝑒

and . The embedded CAN allows for denoising of DECT images for improved 𝑍
𝑒𝑓𝑓

accuracy in  calculation. 𝐻𝑈

However, the study is not without limitations. Phantoms, while valuable for 

validation, do not capture the full biological variability of real patients, which may 

affect generalizability. Additionally, the dependency of the Tanaka model on the 

assumptions of the Saito and Hünemohr models introduces compound sources of 
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error that must be carefully considered when interpreting results. Future work will 

address these challenges by incorporating clinical datasets and expanding the scope 

of models used. 

This work was developed in collaboration with the NYPC, where the 

application will be adopted into their research workflow to support ongoing 

DECT-based studies. With continued development, the methods and tools presented 

in this study represent a meaningful contribution toward safer, more accurate, and 

personalized proton therapy planning. 
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Tables 

 

Material  (ideal) ρ
𝑒

 𝐻𝑈
𝐻

 𝐻𝑈
𝐿

 ∆𝐻𝑈 (α = 0. 459)  ρ
𝑒

𝑐𝑎𝑙
 ρ

𝑒
𝑐𝑎𝑙 − ρ

𝑒
(%)

Lung  0. 258  − 729. 7  − 702. 9  − 742. 1  0. 260  0. 2

Adipose 

tissue 

 0. 951  − 61. 4  − 87. 0  − 49. 6  0. 952  0. 1

Yellow 

Marrow 

 0. 982  − 31. 6  − 59. 6  − 18. 7  0. 982  0. 0

Solid 

Water 

 0. 990  − 4. 2  9. 6  − 10. 5  0. 991  0. 01

Water  1. 000  1. 1  5. 5  − 0. 9  1. 000  0. 0

Breast  1. 014  8. 7  − 1. 0  13. 2  1. 014  0. 0

Brain  1. 035  36. 9  43. 1  34. 1  1. 035  0. 0

Eye lens  1. 055  53. 7  53. 3  53. 9  1. 055  0. 0

Cartilage  1. 083  92. 2  111. 4  83. 4  1. 084  0. 1

Spongiosa  1. 150  208. 6  338. 5  148. 9  1. 150  0. 0

PVC  1. 246  510. 2  1094. 2  242. 2  1. 243  − 0. 3

Femur  1. 278  401. 0  685. 4  270. 5  1. 271  − 0. 7

Ribs  1. 441  612. 5  988. 2  440. 0  1. 440  − 0. 1

Mandible  1. 577  809. 0  1326. 1  571. 6  1. 572  − 0. 5

Cortical 

bone 

 1. 781  1086. 8  1740. 2  786. 9  1. 787  0. 6

PTFE  1. 817  835. 9  877. 5  816. 8  1. 817  0. 0

Aluminum  2. 347  1689. 8  2427. 3  1351. 2  2. 350  0. 3

Table 1: Electron density values and CT numbers based on Saito’s calibration 

model using . Table adapted from [25].  α = 0. 459
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Material  ρ
𝑒,𝑡𝑟𝑢𝑒

 𝑍
𝑒𝑓𝑓,𝑡𝑟𝑢𝑒

 𝐻𝑈
𝐻

 𝐻𝑈
𝐿

 𝑝
𝑒,𝑐𝑎𝑙

 𝐷𝑒𝑣 (%)  𝑍
𝑒𝑓𝑓, 𝑐𝑎𝑙

 𝐷𝑒𝑣 (%)

Lung  0. 258  7. 60  − 741. 8  − 740. 9  0. 258  0. 0  7. 60  0. 0

Adipose  0. 933  6. 23  − 80. 8  − 107. 7  0. 931  − 0. 2  6. 22  − 0. 2

Breast  0. 962  6. 79  − 46. 1  − 62. 8  0. 961  − 0. 1  6. 79  − 0. 1

Brain  1. 035  7. 58  35. 9  38. 9  1. 035  0. 0  7. 58  0. 0

Eye lens  1. 055  7. 30  52. 0  47. 1  1. 054  0. 0  7. 31  0. 0

Spongiosa  1. 150  10. 23  207. 6  339. 7  1. 149  − 0. 1  10. 23  0. 0

Ribs  1. 441  12. 32  610. 6  994. 1  1. 441  0. 0  12. 32  0. 0

Cortical 

Bone 

 1. 780  13. 63  1094. 6  1801. 4  1. 782  0. 1  13. 63  0. 0

Bone 

mineral- 

hydroxyap

atite 

 2. 891  16. 11  2838. 3  4966. 3  2. 898  0. 2  16. 11  0. 0

Thyroid  1. 042  8. 41  52. 9  74. 6  1. 043  0. 1  8. 15  − 3. 1

Table 2: Electron density values, CT numbers, and Effective Atomic Numbers 

based on Saito’s DEEDZ conversion using . Table adapted from [26].  α = 0. 442

 

Calibration SECT-SPR DEEDZ-SPR 

18 cm phantom  94. 9%  95. 1%

33 cm phantom  90. 3%  95. 4%

Difference  − 4. 6  + 0. 3

Table 3: Comparison of the SECT-SPR and DEEDZ-SPR conversion. Table 

adapted from [30]. 

 

 

 



42 

PSNR SSIM LPIPS 

 35. 62 𝑑𝐵  0. 9058  0. 0635

Table 4: Quantitative Evaluation Metrics for CAN Image Denoising 

Performance 

Material  ρ
𝑒

 𝑍
𝑒𝑓𝑓

SPR 

Liver  0. 972  8. 20  1. 07168

LN-450  0. 531  9. 02  0. 58457

Breast  0. 903  7. 82  0. 99560

LN-350  0. 410  7. 86  0. 45085

Cortical Bone  1. 882  12. 10  2. 08301

Adipose  0. 891  7. 07  0. 98268

Brain  0. 949  7. 94  1. 04641

Inner Bone  1. 133  10. 27  1. 25145

 𝑅𝑀𝑆𝐸  0. 00674  1. 30481 - 

 𝑅2  0. 96224  0. 75358 - 

Table 5: Calculated Physical Properties for Tissue-Equivalent Materials 

Using the Tanaka Method with 80/120 kVp DECT 
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Material  ρ
𝑒

 𝑍
𝑒𝑓𝑓

SPR 

Liver  0. 972  7. 33  1. 07003

LN-450  0. 531  6. 34  0. 58541

Breast  0. 903  6. 41  0. 99341

LN-350  0. 410  9. 70  0. 45228

Cortical Bone  1. 882  12. 01  2. 08864

Adipose  0. 891  5. 19  0. 98050

Brain  0. 949  6. 90  1. 04509

Inner Bone  1. 133  9. 80  1. 25133

 𝑅𝑀𝑆𝐸  0. 00674  0. 79768 - 

 𝑅2  0. 96224  0. 84936 - 

Table 6: Calculated Physical Properties for Tissue-Equivalent Materials 

Using the Saito Method with 80/120 kVp DECT 
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Material  ρ
𝑒

 𝑍
𝑒𝑓𝑓

SPR 

Liver  1. 064  7. 97  0. 01673

LN-450  0. 500  10. 35  0. 00735

Breast  0. 958  7. 29  0. 01572

LN-350  0. 312  9. 25  0. 00458

Cortical Bone  2. 791  12. 72  0. 03135

Adipose  0. 918  5. 22  0. 01527

Brain  1. 023  7. 47  0. 01600

Inner Bone  1. 413  10. 98  0. 01964

 𝑅𝑀𝑆𝐸  0. 13762  1. 65512 - 

 𝑅2  0. 22917  0. 68743 - 

Table 7: Calculated Physical Properties for Tissue-Equivalent Materials 

Using the Hünemohr Method with 80/120 kVp DECT 
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Material  ρ
𝑒

(T) 

 𝑍
𝑒𝑓𝑓

(T) 

SPR 

(T) 

 ρ
𝑒

(S) 

 𝑍
𝑒𝑓𝑓

(S) 

SPR 

(S) 

 ρ
𝑒

(H) 

 𝑍
𝑒𝑓𝑓

(H) 

SPR 

(H) 

Liver  1. 043  8. 14  1. 14896  1. 043  4. 10  1. 14923  1. 058  8. 43  0. 01665

LN-450  0. 511  8. 59  0. 56293  0. 511  7. 28  0. 56342  0. 558  9. 14  0. 00821

Breast  0. 967  7. 56  1. 06373  0. 967  4. 76  1. 06431  0. 944  6. 65  0. 01550

LN-350  0. 247  9. 32  0. 27276  0. 247  9. 82  0. 27250  0. 309  9. 99  0. 00453

Cortical 

Bone 

 1. 773  13. 25  1. 96761  1. 773  13. 38  1. 96780  2. 999  15. 12  0. 03368

Adipose  0. 943  7. 45  1. 03824  0. 943  5. 10  1. 03769  0. 916  6. 20  0. 01523

Brain  1. 020  8. 16  1. 12322  1. 020  4. 32  1. 12359  1. 037  8. 47  0. 01623

Inner 

Bone 

 1. 166  10. 58  1. 28746  1. 166  9. 91  1. 28776  1. 465  12. 57  0. 02037

Table 8: Calculated Physical Properties for Tissue-Equivalent Materials with 

70/140 kVp DECT and 100% Radius 

Material  ρ
𝑒

(T) 

 𝑍
𝑒𝑓𝑓

(T) 

SPR 

(T) 

 ρ
𝑒

(S) 

 𝑍
𝑒𝑓𝑓

(S) 

SPR 

(S) 

 ρ
𝑒

(H) 

 𝑍
𝑒𝑓𝑓

(H) 

SPR 

(H) 

Liver  1. 053  8. 11  1. 16028  1. 053  4. 13  1. 16023  1. 070  8. 40  0. 01684

LN-450 0. 5459  8. 48  0. 50600  0. 459  6. 36  0. 50651  0. 489  9. 27  0. 00719

Breast  0. 970  7. 62  1. 06827  0. 970  4. 71  1. 06766  0. 947  6. 59  0. 01553

LN-350  0. 281  8. 74  0. 30988  0. 281  7. 41  0. 31006  0. 312  9. 74  0. 00457

Cortical 

Bone 

 1. 773  12. 87  1. 96903  1. 773  13. 38  1. 96857  3. 128  15. 23  0. 03514

Adipose  0. 946  7. 56  1. 04119  0. 946  4. 96  1. 04033  0. 918  6. 28  0. 01526

Brain  1. 022  8. 14  1. 12576  1. 022  4. 37  1. 12582  1. 042  8. 50  0. 01630

Inner 

Bone 

 1. 165  10. 28  1. 28611  1. 165  9. 78  1. 28619  1. 481  12. 61  0. 02059

Table 9: Calculated Physical Properties for Tissue-Equivalent Materials with 

70/140 kVp DECT and 50% Radius 
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Material  ρ
𝑒

(T) 

 𝑍
𝑒𝑓𝑓

(T) 

SPR 

(T) 

 ρ
𝑒

(S) 

 𝑍
𝑒𝑓𝑓

(S) 

SPR 

(S) 

 ρ
𝑒

(H) 

 𝑍
𝑒𝑓𝑓

(H) 

SPR 

(H) 

Liver 1. 052  8. 11  1. 15912  1. 052  4. 17  1. 15903  1. 070  8. 41  0. 01683

LN-450 0. 4619  8. 47  0. 50773  0. 461  6. 27  0. 50824  0. 490  9. 26  0. 00720

Breast  0. 971  7. 62  1. 06849  0. 971  4. 73  1. 06785  0. 947  6. 55  0. 01553

LN-350  0. 280  8. 65  0. 30861  0. 280  7. 12  0. 30882  0. 307  9. 57  0. 00450

Cortical 

Bone 

 1. 773  12. 88  1. 96839  1. 773  13. 38  1. 96791  3. 131  15. 27  0. 03517

Adipose  0. 944  7. 56  1. 03886  0. 944  4. 94  1. 03797  0. 917  6. 27  0. 01523

Brain  1. 022  8. 13  1. 12674  1. 023  4. 27  1. 12679  1. 041  8. 44  0. 01629

Inner 

Bone 

 1. 167  10. 27  1. 28868  1. 167  9. 75  1. 28877  1. 482  12. 61  0. 02060

Table 10: Calculated Physical Properties for Tissue-Equivalent Materials 

with 70/140 kVp DECT and 25% Radius 
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Figures 

 

 

Figure 1: Example of Dose Volume Histogram. CC BY 3.0, 

https://en.wikipedia.org/w/index.php?curid=32800049 

 

 

 

https://en.wikipedia.org/w/index.php?curid=32800049
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Figure 2: Comparison of Low and High  Values Across Materials at 2.0mm 𝐻𝑈

Slice Thickness 

 

 

Figure 3: SPR-Net User Workflow 
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Figure 4: Autoencoder Flow Chart 
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Figure 5: Autoencoder Architecture 
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Figure 6: SPR-Net Landing Page 

 

Figure 7: SPR-Net Configuration Page 
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Figure 8: SPR-Net Results Page 

 

Figure 9: SPR-Net Comparison Tab 
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Figure 10: SPR-Net Comparison Result View 

 

 

 

 

 

 

 



54 

References 

[1] E. S. Armentia, “Strengths, weaknesses, opportunities, and threat analysis 

of dual-energy CT in head and neck imaging,” 2022. 

 

[2] A. P. Borges, C. Antunes, and L. Curvo-Semedo, “Pros and Cons of 

Dual-Energy CT Systems: ‘One Does Not Fit All,’” Tomography, vol. 9, no. 1, 

pp. 195–216, Jan. 2023, doi: 10.3390/tomography9010017. 

 

[3] H. Chen et al., “Low-dose CT denoising with convolutional neural 

network,” in 2017 IEEE 14th International Symposium on Biomedical 

Imaging (ISBI 2017), Melbourne, Australia: IEEE, Apr. 2017, pp. 143–146. 

doi: 10.1109/ISBI.2017.7950488. 

 

[4] G. Choy et al., “Current Applications and Future Impact of Machine 

Learning in Radiology,” Radiology, vol. 288, no. 2, pp. 318–328, Aug. 2018, doi: 

10.1148/radiol.2018171820. 

 

[5] A. M. Crellin and N. G. Burnet, “Proton Beam Therapy: The Context, 

Future Direction and Challenges Become Clearer,” Clinical Oncology, vol. 26, 

no. 12, pp. 736–738, Dec. 2014, doi: 10.1016/j.clon.2014.10.009. 

 

[6] C. N. De Cecco, A. Laghi, U. J. Schoepf, and F. G. Meinel, Eds., Dual 

Energy CT in Oncology. Cham: Springer International Publishing, 2015. doi: 

10.1007/978-3-319-19563-6. 

 

[7] R. Forghani, B. De Man, and R. Gupta, “Dual-Energy Computed 

Tomography,” Neuroimaging Clinics of North America, vol. 27, no. 3, pp. 

371–384, Aug. 2017, doi: 10.1016/j.nic.2017.03.002. 

 

[8] D. Han, J. V. Siebers, and J. F. Williamson, “A linear, separable 

two-parameter model for dual energy CT imaging of proton stopping power 

computation: Dual-energy CT, proton stopping power,” Med. Phys., vol. 43, no. 

1, pp. 600–612, Jan. 2016, doi: 10.1118/1.4939082. 

 

https://doi.org/10.3390/tomography9010017
https://doi.org/10.1109/ISBI.2017.7950488
https://doi.org/10.1148/radiol.2018171820
https://doi.org/10.1016/j.clon.2014.10.009
https://doi.org/10.1007/978-3-319-19563-6
https://doi.org/10.1016/j.nic.2017.03.002
https://doi.org/10.1118/1.4939082


55 

 

[9] N. Hünemohr, B. Krauss, C. Tremmel, B. Ackermann, O. Jäkel, and S. 

Greilich, “Experimental verification of ion stopping power prediction from 

dual energy CT data in tissue surrogates,” Phys. Med. Biol., vol. 59, no. 1, pp. 

83–96, Jan. 2014, doi: 10.1088/0031-9155/59/1/83. 

 

[10] A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using 

convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 

2179–2198, Oct. 2021, doi: 10.1007/s40747-021-00428-4. 

 

[11] W. Jifara, F. Jiang, S. Rho, M. Cheng, and S. Liu, “Medical image 

denoising using convolutional neural network: a residual learning approach,” 

J Supercomput, vol. 75, no. 2, pp. 704–718, Feb. 2019, doi: 

10.1007/s11227-017-2080-0. 

 

[12] C. Kaethner, J. Müller, and T. M. Buzug, “Determining Noise Distribution 

in Computed Tomography – A Simple Phantom Based Approach,” Biomedical 

Engineering / Biomedizinische Technik, vol. 57, no. SI-1-Track-B, p. 

000010151520124050, Aug. 2012, doi: 10.1515/bmt-2012-4050. 

 

[13] M. Karcaaltincaba and A. Aykut, “Dual-energy CT revisited by 

multidetector ct: review of principles and clinical applications,” Diagn Interv 

Radiol, 2010, doi: 10.4261/1305-3825.DIR.3860-10.0. 

 

[14] B. Kim, M. Han, H. Shim, and J. Baek, “A performance comparison of 

convolutional neural network‐based image denoising methods: The effect of 

loss functions on low‐dose CT images,” Medical Physics, vol. 46, no. 9, pp. 

3906–3923, Sep. 2019, doi: 10.1002/mp.13713. 

 

[15] H. H. C. Lee, B. Li, X. Duan, L. Zhou, X. Jia, and M. Yang, “Systematic 

analysis of the impact of imaging noise on dual‐energy CT ‐based proton 

stopping power ratio estimation,” Medical Physics, vol. 46, no. 5, pp. 

2251–2263, May 2019, doi: 10.1002/mp.13493. 

 

https://doi.org/10.1088/0031-9155/59/1/83
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1007/s11227-017-2080-0
https://doi.org/10.1515/bmt-2012-4050
https://doi.org/10.4261/1305-3825.DIR.3860-10.0
https://doi.org/10.1002/mp.13713
https://doi.org/10.1002/mp.13493


56 

 

[16] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional 

Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans. Neural 

Netw. Learning Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 

10.1109/TNNLS.2021.3084827. 

 

[17] H. Liu and Y.J. Chang, “Proton Therapy in Clinical Practice,” Chinese 

Journal of Cancer., vol. 30, no.5, pp. 315-326, doi: 0.5732/cjc.010.10529  

 

[18] B. Mahesh, “Machine Learning Algorithms - A Review,” IJSR, vol. 9, no. 

1, pp. 381–386, Jan. 2020, doi: 10.21275/ART20203995. 

 

[19] R. S. Maia, C. Jacob, A. K. Hara, A. C. Silva, W. Pavlicek, and M. J. Ross, 

“An algorithm for noise correction of dual-energy computed tomography 

material density images,” Int J CARS, vol. 10, no. 1, pp. 87–100, Jan. 2015, 

doi: 10.1007/s11548-014-1006-z. 

 

[20] T. E. Merchant, “Clinical Controversies: Proton Therapy for Pediatric 

Tumors,” Seminars in Radiation Oncology, vol. 23, no. 2, pp. 97–108, Apr. 

2013, doi: 10.1016/j.semradonc.2012.11.008. 

 

[21] P. Omoumi, F. Becce, D. Racine, J. Ott, G. Andreisek, and F. Verdun, 

“Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in 

Musculoskeletal Imaging (Part 1),” Semin Musculoskelet Radiol, vol. 19, no. 

05, pp. 431–437, Dec. 2015, doi: 10.1055/s-0035-1569253. 

 

[22] H. Paganetti, “Range uncertainties in proton therapy and the role of 

Monte Carlo simulations,” Phys. Med. Biol., vol. 57, no. 11, pp. R99–R117, Jun. 

2012, doi: 10.1088/0031-9155/57/11/R99. 

 

[23] P. C. Park et al., “Statistical Assessment of Proton Treatment Plans 

Under Setup and Range Uncertainties,” International Journal of Radiation 

 

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.5732/cjc.010.10529
https://doi.org/10.21275/ART20203995
https://doi.org/10.1007/s11548-014-1006-z
https://doi.org/10.1016/j.semradonc.2012.11.008
https://doi.org/10.1055/s-0035-1569253
https://doi.org/10.1088/0031-9155/57/11/R99


57 

Oncology*Biology*Physics, vol. 86, no. 5, pp. 1007–1013, Aug. 2013, doi: 

10.1016/j.ijrobp.2013.04.009. 

 

[24] D. M. C. Poon, S. Wu, L. Ho, K. Y. Cheung, and B. Yu, “Proton Therapy for 

Prostate Cancer: Challenges and Opportunities,” Cancers, vol. 14, no. 4, p. 

925, Feb. 2022, doi: 10.3390/cancers14040925. 

 

[25] M. Saito, “Potential of dual‐energy subtraction for converting CT 

numbers to electron density based on a single linear relationship,” Medical 

Physics, vol. 39, no. 4, pp. 2021–2030, Apr. 2012, doi: 10.1118/1.3694111. 

 

[26] M. Saito and S. Sagara, “A simple formulation for deriving effective 

atomic numbers via electron density calibration from dual-energy CT data in 

the human body,” Med. Phys., vol. 44, no. 6, pp. 2293–2303, Jun. 2017, doi: 

10.1002/mp.12176. 

 

[27] S. Sajja et al., “Technical Principles of Dual-Energy Cone Beam Computed 

Tomography and Clinical Applications for Radiation Therapy,” Advances in 

Radiation Oncology, vol. 5, no. 1, pp. 1–16, Jan. 2020, doi: 

10.1016/j.adro.2019.07.013. 

 

[28] E. Santos Armentia, T. Martín Noguerol, N. Silva Priegue, C. Delgado 

Sánchez-Gracián, C. Trinidad López, and R. Prada González, “Strengths, 

weaknesses, opportunities, and threat analysis of dual-energy CT in head and 

neck imaging,” Radiología (English Edition), vol. 64, no. 4, pp. 333–347, Jul. 

2022, doi: 10.1016/j.rxeng.2022.05.003. 

 

[29] A. R. Smith, “Proton therapy,” Phys. Med. Biol., vol. 51, no. 13, pp. 

R491–R504, Jul. 2006, doi: 10.1088/0031-9155/51/13/R26. 

 

[30] S. Tanaka, Y. Noto, S. Utsunomiya, T. Yoshimura, T. Matsuura, and M. 

Saito, “Proton dose calculation based on converting dual-energy CT data to 

stopping power ratio (DEEDZ-SPR): a beam-hardening assessment,” Phys. 

 

https://doi.org/10.1016/j.ijrobp.2013.04.009
https://doi.org/10.3390/cancers14040925
https://doi.org/10.1118/1.3694111
https://doi.org/10.1002/mp.12176
https://doi.org/10.1016/j.adro.2019.07.013
https://doi.org/10.1016/j.rxeng.2022.05.003
https://doi.org/10.1088/0031-9155/51/13/R26


58 

Med. Biol., vol. 65, no. 23, p. 235046, Dec. 2020, doi: 

10.1088/1361-6560/abae09. 

 

[31] S.-J. Tu, W.-Y. Chen, and C.-T. Wu, “Uncertainty measurement of 

radiomics features against inherent quantum noise in computed tomography 

imaging,” Eur Radiol, vol. 31, no. 10, pp. 7865–7875, Oct. 2021, doi: 

10.1007/s00330-021-07943-5. 

 

[32] S. Wang and R. M. Summers, “Machine learning and radiology,” Medical 

Image Analysis, vol. 16, no. 5, pp. 933–951, Jul. 2012, doi: 

10.1016/j.media.2012.02.005. 

 

[33] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional 

neural networks: an overview and application in radiology,” Insights Imaging, 

vol. 9, no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/s13244-018-0639-9. 

 

[34] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss Functions for Neural 

Networks for Image Processing,” Apr. 20, 2018, arXiv: arXiv:1511.08861. doi: 

10.48550/arXiv.1511.08861. 

 

 

https://doi.org/10.1088/1361-6560/abae09
https://doi.org/10.1007/s00330-021-07943-5
https://doi.org/10.1016/j.media.2012.02.005
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.48550/arXiv.1511.08861

	 
	1.​Introduction 
	2.​Background 
	2.1 Proton Therapy 
	2.2 Dual-Energy Computed Tomography 
	2.3 Existing SPR Calibration Models 
	2.3.1 Saito Model 
	2.3.2 Hünemohr Model 
	2.3.3 Tanaka Model 

	2.4 Machine Learning in Medical Imaging 
	2.4.1 Overview of Machine Learning in Radiology 
	2.4.2 Convolutional Neural Networks (CNNs) 
	2.4.3 CNNs for Denoising 


	3.​Methodology 
	3.1 Overview of SPR-Net 
	3.1.1 Objectives and Functional Requirements 
	3.1.2 Workflow and User Interaction 

	3.2 CAN-Based Noise Reduction 
	3.2.1 Architecture of the CAN Model 
	3.2.2 Training and Optimization 


	4.​Application Development.  
	4.1 Software Architecture 

	5.​Evaluation and Validation 
	5.1 Benchmarking Against Ground Truth Values 
	 5.2 Model Accuracy and Performance Metrics 
	​5.2.1 Evaluation of SPR Calculation Methods 
	​5.2.2 CAN Performance in Noise Reduction 


	6.​Discussion and Future Work 
	6.1 Comparison of Model Performance 
	6.2 Limitations of Current Implementation 
	6.3 Future Directions 
	6.4 Potential Clinical Impact 

	7.​Conclusion 
	Tables 
	Figures 
	 
	 
	 
	References 


